Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.12.21267573

ABSTRACT

A post-hoc analysis of the phase 2 data was performed for the SARS-COV-2 subunit protein vaccine MVC-COV1901. Anti-spike IgG, neutralization assays with live virus and pseudovirus were used to demonstrate age-dependent vaccine-induced antibody response to the vaccine. Results showed that an association exists between age and immune responses to the vaccine, providing further support for the need of booster shots, especially for the older age groups.

2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-944205.v1

ABSTRACT

SARS-CoV-2 breakthrough infection occurs due to waning immunity time-to-vaccine, to which the globally-dominant, highly-contagious Delta variant is behind the scene. In the primary 2-dose and booster series of clinical Phase-1 trial, UB-612 vaccine, which contains S1-RBD and synthetic Th/CTL peptide pool for activation of humoral and T-cell immunity, induces substantial, prolonged viral-neutralizing antibodies that goes parallel with a long-lasting T-cell immunity; and a booster (3rd ) dose can prompt recall of memory immunity to induce profound, striking antibodies with the highest level of 50% viral-neutralizing GMT titers against live Delta variant reported for any vaccine. The unique design of S1-RBD only plus multitope T-cell peptides may have underpinned UB-612’s potent anti-Delta effect, while the other full S protein-based vaccines are affected additionally by mutations in the N-terminal domain sequence which contains additional neutralizing epitopes. UB-612, safe and well-tolerated, could be effective for boosting other vaccine platforms that have shown modest homologous boosting. [Funded by United Biomedical Inc., Asia; ClinicalTrials.gov ID: NCT04967742 and NCT04545749]


Subject(s)
Breakthrough Pain
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.05.21261532

ABSTRACT

BackgroundWe have assessed the safety and immunogenicity of the COVID-19 vaccine MVC-COV1901, a recombinant protein vaccine containing prefusion-stabilized spike protein S-2P adjuvanted with CpG 1018 and aluminium hydroxide. MethodsThis is a phase 2, prospective, randomised, double-blind, placebo-controlled, and multi-centre study to evaluate the safety, tolerability, and immunogenicity of the SARS-CoV-2 vaccine candidate MVC-COV1901. The study comprised 3,844 participants of [≥] 20 years who were generally healthy or with stable pre-existing medical conditions. The study participants were randomly assigned in a 6:1 ratio to receive either MVC-COV1901 containing 15 g of S-2P protein or placebo containing saline. Participants received two doses of MVC-COV1901 or placebo, administered 28 days apart via intramuscular injection. The primary outcomes were to evaluate the safety, tolerability, and immunogenicity of MVC-COV1901 from Day 1 (the day of first vaccination) to Day 57 (28 days after the second dose). Immunogenicity of MVC-COV1901 was assessed through geometric mean titres (GMT) and seroconversion rates (SCR) of neutralising antibody and antigen-specific immunoglobulin. This clinical trial is registered at ClinicalTrials.gov: NCT04695652. FindingsFrom the start of this phase 2 trial to the time of interim analysis, no vaccine-related Serious Adverse Events (SAEs) were recorded. The most common solicited adverse events across all study participants were pain at the injection site (64%), and malaise/fatigue (35%). Fever was rarely reported (<1%). For all participants in the MVC-COV1901 group, at 28 days after the second dose against wild type SARS-CoV-2 virus, the GMT was 662{middle dot}3 (408 IU/mL), the GMT ratio was 163{middle dot}2, and the seroconversion rate was 99{middle dot}8%. InterpretationMVC-COV1901 shows good safety profiles and promising immunogenicity responses. The current data supports MVC-COV1901 to enter phase 3 efficacy trials and could enable regulatory considerations for Emergency Use Authorisation (EUA). FundingMedigen Vaccine Biologics Corporation and Taiwan Centres for Disease Control.


Subject(s)
Pain , Fever , Drug-Related Side Effects and Adverse Reactions , COVID-19 , Fatigue
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.03.454910

ABSTRACT

COVID-19 in humans is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that belongs to the beta family of coronaviruses. SARS-CoV-2 causes severe respiratory illness in 10-15% of infected individuals and mortality in 2-3%. Vaccines are urgently needed to prevent infection and to contain viral spread. Although several mRNA- and adenovirus-based vaccines are highly effective, their dependence on the cold chain transportation makes global vaccination a difficult task. In this context, a stable lyophilized vaccine may present certain advantages. Accordingly, establishing additional vaccine platforms remains vital to tackle SARS-CoV-2 and any future variants that may arise. Vaccinia virus (VACV) has been used to eradicate smallpox disease, and several attenuated viral strains with enhanced safety for human applications have been developed. We have generated two candidate SARS-CoV-2 vaccines based on two vaccinia viral strains, MVA and v-NY, that express full-length SARS-CoV-2 spike protein. Whereas MVA is growth-restricted in mammalian cells, the v-NY strain is replication-competent. We demonstrate that both candidate recombinant vaccines induce high titers of neutralizing antibodies in C57BL/6 mice vaccinated according to prime-boost regimens. Furthermore, our vaccination regimens generated TH1-biased immune responses in mice. Most importantly, prime-boost vaccination of a Syrian hamster infection model with MVA-S and v-NY-S protected the hamsters against SARS-CoV-2 infection, supporting that these two vaccines are promising candidates for future development. Finally, our vaccination regimens generated neutralizing antibodies that partially cross-neutralized SARS-CoV-2 variants of concern.


Subject(s)
Coronavirus Infections , COVID-19 , Respiratory Insufficiency
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.06.425497

ABSTRACT

COVID-19 pandemic has ravaged the world, caused over 1.8 million deaths in the first year, and severely affected the global economy. Hawaii is not spared from the transmission of SARS-CoV-2 in the local population, including high infection rates in racial and ethnic minorities. Early in the pandemic, we described in this journal various technologies used for the detection of SARS-CoV-2. Herein we characterize a 969-bp SARS-CoV-2 segment of the S gene downstream of the receptor-binding domain. At the John A. Burns School of Medicine Biocontainment Facility, RNA was extracted from an oropharyngeal swab and a nasal swab from two patients from Hawaii who were infected with the SARS-CoV-2 in August 2020. Following PCR, the two viral strains were sequenced using Sanger sequencing, and phylogenetic trees were generated using MEGAX. Phylogenetic tree results indicate that the virus has been introduced to Hawaii from multiple sources. Further, we decoded 13 single nucleotide polymorphisms across 13 unique SARS-CoV-2 genomes within this region of the S gene, with one non-synonymous mutation (P681H) found in the two Hawaii strains. The P681H mutation has unique and emerging characteristics with a significant exponential increase in worldwide frequency when compared to the plateauing of the now universal D614G mutation. The P681H mutation is also characteristic of the new SARS-CoV-2 variants from the United Kingdom and Nigeria. Additionally, several mutations resulting in cysteine residues were detected, potentially resulting in disruption of the disulfide bridges in and around the receptor-binding domain. Targeted sequence characterization is warranted to determine the origin of multiple introductions of SARS-CoV-2 circulating in Hawaii.


Subject(s)
COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.07.425621

ABSTRACT

New approaches to complement vaccination are needed to combat the spread of SARS-CoV-2 and stop COVID-19 related deaths and long-term medical complications. Human beta defensin 2 (hBD-2) is a naturally occurring epithelial cell derived host defense peptide that has antiviral properties. Our comprehensive in-silico studies demonstrate that hBD-2 binds the site on the CoV-2-RBD that docks with the ACE2 receptor. Biophysical and biochemical assays confirm that hBD-2 indeed binds to the CoV-2-receptor binding domain (RBD) (KD ~ 300 nM), preventing it from binding to ACE2 expressing cells. Importantly, hBD-2 shows specificity by blocking CoV-2/spike pseudoviral infection, but not VSV-G mediated infection, of ACE2 expressing human cells with an IC50 of 2.4+ 0.1 microM. These promising findings offer opportunities to develop hBD-2 and/or its derivatives and mimetics to safely and effectively use as novel agents to prevent SARS-CoV-2 infection.


Subject(s)
COVID-19
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.07.425307

ABSTRACT

COVID-19 caused by SARS-CoV-2 has caused a massive health crisis across the world, and genetic variants such as the D614G gaining enhanced infectivity and competitive fitness have significantly aggravated the global concern. In this regard, the latest SARS-CoV-2 variant, B.1.1.7 lineage, reported from the United Kingdom (UK) is of great significance, in that it contains several mutations that increases its infection and transmission rates as evidenced by the increased number of clinical reports. Specifically, the N501Y mutation in the SARS-CoV-2 S1 receptor binding domain (RBD) domain has been shown to possess increased affinity for ACE2, although the basis for this not yet clear. Here, we dissect the mechanism underlying the increased affinity using molecular dynamics (MD) simulations of the available ACE2-S1-RBD complex structure (6M0J) and show a prolonged and stable interaction of the Y501 residue in the N501Y mutant S1-RBD with interfacial residues, Y41 and K353, in ACE2 as compared to the wild type S1-RBD. Additionally, we find that the N501Y mutant S1-RBD displays altered dynamics that likely aids in its enhanced interaction with ACE2. By elucidating a mechanistic basis for the increased affinity of the N501Y mutation in S1-RBD for ACE2, we believe that the results presented here will aid in developing therapeutic strategies against SARS-CoV-2 including designing drugs targeting the ACE2-S1-RBD interaction.


Subject(s)
COVID-19 , Seizures
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.07.425674

ABSTRACT

The COVID-19 pandemic presents an unprecedented challenge to global public health. Rapid development and deployment of safe and effective vaccines are imperative to control the pandemic. In the current study, we applied our adjuvanted stable prefusion SARS-CoV-2 spike (S-2P)-based vaccine, MVC-COV1901, to hamster models to demonstrate immunogenicity and protection from virus challenge. Golden Syrian hamsters immunized intramuscularly with two injections of 1 {micro}g or 5 {micro}g of S-2P adjuvanted with CpG 1018 and aluminum hydroxide (alum) were challenged intranasally with SARS-CoV-2. Prior to virus challenge, the vaccine induced high levels of neutralizing antibodies with 10,000-fold higher IgG level and an average of 50-fold higher pseudovirus neutralizing titers in either dose groups than vehicle or adjuvant control groups. Six days after infection, vaccinated hamsters did not display any weight loss associated with infection and had significantly reduced lung pathology and most importantly, lung viral load levels were reduced to lower than detection limit compared to unvaccinated animals. Vaccination with either 1 g or 5 g of adjuvanted S-2P produced comparable immunogenicity and protection from infection. This study builds upon our previous results to support the clinical development of MVC-COV1901 as a safe, highly immunogenic, and protective COVID-19 vaccine.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL